资源类型

期刊论文 487

会议视频 5

会议信息 2

年份

2024 1

2023 30

2022 54

2021 44

2020 42

2019 44

2018 14

2017 15

2016 20

2015 8

2014 23

2013 31

2012 12

2011 20

2010 16

2009 32

2008 18

2007 15

2006 4

2005 6

展开 ︾

关键词

混凝土 16

三峡工程 7

三峡升船机 4

关键技术 3

天然气水合物 3

混凝土面板堆石坝 3

2019 2

SEA 2

三点弯曲梁 2

制氢 2

升船机 2

南海 2

沙尘暴 2

海水淡化 2

海水西调 2

深海 2

混凝土坝 2

混凝土浇筑 2

渤海海峡 2

展开 ︾

检索范围:

排序: 展示方式:

Compressive behavior and microstructure of concrete mixed with natural seawater and sea sand

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1347-1357 doi: 10.1007/s11709-021-0780-2

摘要: Noncorrosive reinforcement materials facilitate producing structural concrete with seawater and sea sand. This study investigated the properties of seawater and sea sand concrete (SSC), considering the curing age (3, 7, 14, 21, 28, 60, and 150 d) and strength grade (C30, C40, and C60). The compressive behavior of SSC was obtained by compressive tests and digital image correction (DIC) technique. Scanning electron microscope (SEM) and X-ray powder diffraction (XRD) methods were applied to understand the microstructure and hydration products of cement in SSC. Results revealed a 30% decrease in compressive strength for C30 and C40 SSC from 60 to 150 d, and a less than 5% decrease for C60 from 28 to 150 d. DIC results revealed significant cracking and crushing from 80% to 100% of compressive strength. SEM images showed a more compact microstructure in higher strength SSC. XRD patterns identified Friedel’s salt phase due to the chlorides brought by seawater and sea sand. The findings in this study can provide more insights into the microstructure of SSC along with its short- and long-term compressive behavior.

关键词: seawater and sea sand concrete     compressive strength     strain field     microstructure     hydration products    

Effects of coarse and fine aggregates on long-term mechanical properties of sea sand recycled aggregateconcrete

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 754-772 doi: 10.1007/s11709-021-0711-2

摘要: Typical effects of coarse and fine aggregates on the long-term properties of sea sand recycled aggregate concrete (SSRAC) are analyzed by a series of axial compression tests. Two different types of fine (coarse) aggregates are considered: sea sand and river sand (natural and recycled coarse aggregates). Variations in SSRAC properties at different ages are investigated. A novel test system is developed via axial compression experiments and the digital image correlation method to obtain the deformation field and crack development of concrete. Supportive results show that the compressive strength of SSRAC increase with decreasing recycled coarse aggregate replacement percentage and increasing sea sand chloride ion content. The elastic modulus of SSRAC increases with age. However, the Poisson’s ratio reduces after 2 years. Typical axial stress–strain curves of SSRAC vary with age. Generally, the effect of coarse aggregates on the axial deformation of SSRAC is clear; however, the deformation differences between coarse aggregate and cement mortar reduce by adopting sea sand. The aggregate type changes the crack characteristics and propagation of SSRAC. Finally, an analytical expression is suggested to construct the long-term stress–strain curve of SSRAC.

关键词: sea sand recycled aggregate concrete     recycled coarse aggregate replacement percentage     sea sand chloride ion content     long-term mechanical properties     stress–strain curve    

Destructive and non-destructive evaluation of concrete for optimum sand to aggregate volume ratio

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1400-1414 doi: 10.1007/s11709-021-0779-8

摘要: Aggregates are the biggest contributor to concrete volume and are a crucial parameter in dictating its mechanical properties. As such, a detailed experimental investigation was carried out to evaluate the effect of sand-to-aggregate volume ratio (s/a) on the mechanical properties of concrete utilizing both destructive and non-destructive testing (employing UPV (ultrasonic pulse velocity) measurements). For investigation, standard cylindrical concrete samples were made with different s/a (0.36, 0.40, 0.44, 0.48, 0.52, and 0.56), cement content (340 and 450 kg/m3), water-to-cement ratio (0.45 and 0.50), and maximum aggregate size (12 and 19 mm). The effect of these design parameters on the 7, 14, and 28 d compressive strength, tensile strength, elastic modulus, and UPV of concrete were assessed. The careful analysis demonstrates that aggregate proportions and size need to be optimized for formulating mix designs; optimum ratios of s/a were found to be 0.40 and 0.44 for the maximum aggregate size of 12 and 19 mm, respectively, irrespective of the W/C (water-to-cement) and cement content.

关键词: aggregates     non-destructive testing     sand-to-aggregate volume ratio (s/a)     maximum aggregate size (MAS)    

Effect of microlimestone on properties of self-consolidating concrete with manufactured sand and mineral

Fulin Qu, Wengui Li, Xiaohui Zeng, Zhiyu Luo, Kejin Wang, Daichao Sheng

《结构与土木工程前沿(英文)》 2020年 第14卷 第6期   页码 1545-1560 doi: 10.1007/s11709-020-0678-4

摘要: Self-consolidating concrete (SCC) with manufactured sand (MSCC) is crucial to guarantee the quality of concrete construction technology and the associated property. The properties of MSCC with different microlimestone powder (MLS) replacements of retreated manufactured sand (TMsand) are investigated in this study. The result indicates that high-performance SCC, made using TMsand (TMSCC), achieved high workability, good mechanical properties, and durability by optimizing MLS content and adding fly ash and silica fume. In particular, the TMSCC with 12% MLS content exhibits the best workability, and the TMSCC with 4% MLS content has the highest strength in the late age, which is even better than that of SCC made with the river sand (Rsand). Though MLS content slightly affects the hydration reaction of cement and mainly plays a role in the nucleation process in concrete structures compared to silica fume and fly ash, increasing MLS content can evidently have a significant impact on the early age hydration progress. TMsand with MLS content ranging from 8% to 12% may be a suitable alternative for the Rsand used in the SCC as fine aggregate. The obtained results can be used to promote the application of SCC made with manufactured sand and mineral admixtures for concrete-based infrastructure.

关键词: microlimestone powder     manufactured sand     retreated manufactured sand     self-consolidating concrete     mineral admixture    

Effects of microfine aggregate in manufactured sand on bleeding and plastic shrinkage cracking of concrete

Branavan ARULMOLY; Chaminda KONTHESINGHA; Anura NANAYAKKARA

《结构与土木工程前沿(英文)》 2022年 第16卷 第11期   页码 1453-1473 doi: 10.1007/s11709-022-0877-2

摘要: Construction industries have started to utilize manufactured sand (MS) as an effective alternative for river sand in concrete. High-grade parent rocks are crushed to obtain MS, which also produces a considerable amount of microfine aggregate (MFA). The higher percentage of MFA could lead to both positive and negative effects on the performance of cement-based mixes. This research was done to examine the influence of varying MFA levels, specifically 0%, 3%, 6%, 9%, and 12% (by weight) as the partial replacements of MS on bleeding and plastic shrinkage cracking of concrete. In addition to the varying MFA levels, some concrete mixes also included fly ash (FA) and superplasticizer to investigate the effect of free-water content in the mixes. The bleeding test data were taken as on-site measurements, while the cracks from the plastic shrinkage cracking test were evaluated using an image processing technique. The results concluded that the MFA replacements and the effective water-to-cement ratio have a significant effect on the selected concrete properties. With the increasing replacement levels, cumulative bleeding and crack initiation life gradually decreased, while a progressive increase was observed for crack width, crack length, and crack area.

关键词: manufactured sand     fresh concrete     microfines     admixtures     shrinkage     cracking    

Damage-constitutive model for seawater coral concrete using different stirrup confinements subjected

《结构与土木工程前沿(英文)》 2023年 第17卷 第3期   页码 429-447 doi: 10.1007/s11709-022-0913-2

摘要: Recently, the application of detrital coral as an alternative to natural aggregates in marine structures has attracted increased attention. In this study, research on the compressive performance of coral aggregate concrete (CAC) confined using steel stirrups with anti-rust treatment was experimentally conducted. A total of 45 specimens were cast, including 9 specimens without stirrups and under different strength grades (C20, C30, and C40) and 36 specimens under different strength grades (C20, C30, and C40). Moreover, three stirrup levels (rectangular, diamond-shaped compound, and spiral stirrups) and different stirrup spacings (40, 50, 60, and 70 mm) were used. Subsequently, the stress−strain curves of specimens subjected to axial loading were measured. The effects of the stirrup spacing and stirrup configurations on the stress and strain were investigated, respectively, and the lateral effective stress of the different stirrups was calculated based on the cohesive-elastic ring model and modified elastic beam theory. Moreover, a damage-constitutive model of CAC considering the lateral stress was set up based on damage mechanics theory. The results indicated an increase in the stress and strain with a decrease in the stirrup spacing, and the adopted stirrup ratio had a better strengthening effect than the different concrete grades, and the variation in the deformation was restricted by the performance of coral coarse aggregate (CA). However, an increment in the lateral strain was observed with an increase in the axial strain. The lateral stress model showed a good agreement with the experimental data, and the proposed damage-constitutive model had a good correlation with the measured stress−strain curves.

关键词: coral aggregate concrete     stress−strain curves     lateral effective stress     peak stress     axial−lateral curves     damage-constitutive model.    

Seismic response of precast reinforced concrete wall subjected to cyclic in-plane and constant out-of-plane

《结构与土木工程前沿(英文)》 2021年 第15卷 第5期   页码 1128-1143 doi: 10.1007/s11709-021-0753-5

摘要: This paper provides insight into the seismic behavior of a full-scale precast reinforced concrete wall under in-plane cyclic loading combined with out-of-plane loading replicated by sand backfill to simulate the actual condition of basement walls. The tested wall exhibited flexural cracks, owing to the high aspect ratio and considerable out-of-plane movement due to lateral pressure from the backfill. The wall performed satisfactorily by exhibiting competent seismic parameters and deformation characteristics governed by its ductile response in the nonlinear phase during the test with smaller residual drift. Numerical analysis was conducted to validate experimental findings, which complied with each other. The numerical model was used to conduct parametric studies to study the effect of backfill density and aspect ratio on seismic response of the proposed precast wall system. The in-plane capacity of walls reduced, while deformation characteristics were unaffected by the increase in backfill density. An increase in aspect ratio leads to a reduction in in-plane capacity and an increase in drift. Curves between the ratio of in-plane yield capacity and design shear load of walls are proposed for the backfill density, which may be adopted to determine the in-plane yield capacity of the basement walls based on their design shear.

关键词: precast wall     basement wall     out-of-plane response     quasi-static test     sand backfill     seismic parameters    

Numerical simulation of compaction parameters for sand-filled embankment using large thickness sand filling

Wentao WANG, Chongzhi TU, Rong LUO

《结构与土木工程前沿(英文)》 2018年 第12卷 第4期   页码 568-576 doi: 10.1007/s11709-017-0444-4

摘要: The study uses the finite element method to simulate a new technique of highway sand embankment filling in Jianghan Plain district, which can raise the thickness of sand-filled layer from 30 cm to 70 cm and can significantly shorten the construction period based on the guarantee of sand embankment construction quality. After simulating the three compacting proposals carried out on the field test, the study uses COMSOL software to research on the compacting effects of sand-filled layers in larger thicknesses by 22 ton vibratory roller alone, and then to investigate the steady compacting effect of 12 ton vibratory roller. The simulation results indicate that the sand-filled layer thickness of 70 cm is suitable for the new sand filling technique, and the sand-filled embankment project with tight construction period is suggested to choose the 12 ton vibration roller for steady compaction.

关键词: sand embankment     compaction in large thickness     numerical simulation     small size vibratory roller     steady compaction    

Unified description of sand behavior

Feng ZHANG, Bin YE, Guanlin YE

《结构与土木工程前沿(英文)》 2011年 第5卷 第2期   页码 121-150 doi: 10.1007/s11709-011-0104-z

摘要: In this paper, the mechanical behavior of sand, was systematically described and modeled with a elastoplastic model proposed by Zhang et al. [ ]. Without losing the generality of the sand, a specific sand called as Toyoura sand, a typical clean sand found in Japan, has been discussed in detail. In the model, the results of conventional triaxial tests of the sand under different loading and drainage conditions were simulated with a fixed set of material parameters. The model only employs eight parameters among which five parameters are the same as those used in Cam-clay model. Once the parameters are determined with the conventional drained triaxial compression tests and undrained triaxial cyclic loading tests, then they are fixed to uniquely describe the overall mechanical behaviors of the Toyoura sand, without changing the values of the eight parameters irrespective of what kind of the loadings or the drainage conditions may be. The capability of the model is discussed in a theoretical way.

关键词: constitutive model     sand     stress-induced anisotropy     density     structure    

Nonlinear sealing force of a seawater balance valve used in an 11000-meter manned submersible

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0726-y

摘要: Balance valve is a core component of the 11000-meter manned submersible “struggle,” and its sealing performance is crucial and challenging when the maximum pressure difference is 118 MPa. The increasing sealing force improves the sealing performance and increases the system’s energy consumption at the same time. A hybrid analytical–numerical–experimental (ANE) model is proposed to obtain the minimum sealing force, ensuring no leakage at the valve port and reducing energy consumption as much as possible. The effects of roundness error, environmental pressure, and materials on the minimum sealing force are considered in the ANE model. The basic form of minimum sealing force equations is established, and the remaining unknown coefficients of the equations are obtained by the finite element method (FEM). The accuracy of the equation is evaluated by comparing the independent FEM data to the equation data. Results of the comparison show good agreement, and the difference between the independent FEM data and equation data is within 3% when the environmental pressure is 0–118 MPa. Finally, the minimum sealing force equation is applied in a balance valve to be experimented using a deep-sea simulation device. The balance valve designed through the minimum sealing force equation is leak-free in the experiment. Thus, the minimum sealing force equation is suitable for the ultrahigh pressure balance valve and has guiding significance for evaluating the sealing performance of ultrahigh pressure balance valves.

关键词: seawater balance valve     sealing performance     hybrid ANE model     FEM     minimum sealing force equation    

Effect of seawater salinity on the synthesis of zeolite from coal fly ash

Yanqing YU, Xiaoliang LI, Xiaolan ZOU, Xiaobin ZHU

《环境科学与工程前沿(英文)》 2014年 第8卷 第1期   页码 54-61 doi: 10.1007/s11783-013-0493-4

摘要: A novel method for the synthesis of zeolite was developed in this paper. The synthesis was carried out by hydrothermal activation after alkali fusion and coal fly ash (CFA) was used as raw material with seawater of different salinities. Seawater salinity was varied from 32 to 88 for zeolite crystallization during the hydrothermal process. The results show that seawater salinity plays an important role in zeolite synthesis with CFA during hydrothermal treatment. The products were a mixture of NaX zeolite and hydroxysodalite; seawater salinity more strongly affected the crystallization than the type and chemical composition of the zeolites. The yield of CFA transformed into zeolite gradually rose with the increase in salinity, reaching a transformation rate of 48%–62% as the salinity increased from 32 to 88, respectively. The proposed method allows for the efficient disposal of by-products; therefore, the application of seawater in zeolite synthesis presents promising economic and ecological benefits.

关键词: coal fly ash (CFA)     seawater salinity     zeolite synthesis    

A “Seawater-in-Sludge” approach for capacitive biochar production via the alkaline and alkaline earth

Xiling Li, Tianwei Hao, Yuxin Tang, Guanghao Chen

《环境科学与工程前沿(英文)》 2021年 第15卷 第1期 doi: 10.1007/s11783-020-1295-0

摘要: Abstract • Capacitive biochar was produced from sewage sludge. • Seawater was proved to be an alternative activation agent. • Minerals vaporization increased the surface area of biochar. • Molten salts acted as natural templates for the development of porous structure. Sewage sludge is a potential precursor for biochar production, but its effective utilization involves costly activation steps. To modify biochar properties while ensuring cost-effectiveness, we examined the feasibility of using seawater as an agent to activate biochar produced from sewage sludge. In our proof-of-concept study, seawater was proven to be an effective activation agent for biochar production, achieving a surface area of 480.3 m2/g with hierarchical porosity distribution. Benefited from our design, the catalytic effect of seawater increased not only the surface area but also the graphitization degree of biochar when comparing the pyrolysis of sewage sludge without seawater. This leads to seawater activated biochar electrodes with lower resistance, higher capacitance of 113.9 F/g comparing with control groups without seawater. Leveraging the global increase in the salinity of groundwater, especially in coastal areas, these findings provide an opportunity for recovering a valuable carbon resource from sludge.

关键词: Sewage sludge     Biochar     Seawater     Recourse recovery     Capacitor    

Research review of the cement sand and gravel (CSG) dam

Xin CAI, Yingli WU, Xingwen GUO, Yu MING

《结构与土木工程前沿(英文)》 2012年 第6卷 第1期   页码 19-24 doi: 10.1007/s11709-012-0145-y

摘要: The cement sand and gravel (CSG) dam is a new style of dam that owes the advantages both of the concrete faced rock-fill dam (CRFD) and roller compacted concrete (RCC) gravity dam, because of which it has attracted much attention of experts home and abroad. At present, some researches on physic-mechanical property of CSG material and work behavior of CSG dam have been done. This paper introduces the development and characteristics of CSG dam systematically, and summarizes the progress of the study on basic tests, constitutive relation of CSG material and numerical analysis of CSG dam, in addition, indicates research and application aspect of the dam.

关键词: cement sand and gravel (CSG) dam     cement sand and gravel (CSG) material     research review    

An overview and recent advances in electrocatalysts for direct seawater splitting

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1408-1426 doi: 10.1007/s11705-021-2102-6

摘要: In comparison to pure water, seawater is widely accepted as an unlimited resource. The direct seawater splitting is economical and eco-friendly, but the key challenges in seawater, especially the chlorine-related competing reactions at the anode, seriously hamper its practical application. The development of earth-abundant electrocatalysts toward direct seawater splitting has emerged as a promising strategy. Highly efficient electrocatalysts with improved selectivity and stability are of significance in preventing the interference of side reactions and resisting various impurities. This review first discusses the macroscopic understanding of direct seawater electrolysis and then focuses on the strategies for rational design of electrocatalysts toward direct seawater splitting. The perspectives of improved electrocatalysts to solve emerging challenges and further development of direct seawater splitting are also provided.

关键词: seawater splitting     electrocatalysts     oxygen evolution reaction     hydrogen evolution reaction     chlorine chemistry    

strong>x nanosheets on Ni foam as an electrocatalyst for efficient overall alkaline seawater

《化学科学与工程前沿(英文)》 2023年 第17卷 第11期   页码 1698-1706 doi: 10.1007/s11705-023-2334-8

摘要: The electrocatalyst NiFeRuOx/NF, comprised of NiFeRuOx nanosheets grown on Ni foam, was synthesized using a hydrothermal process followed by thermal annealing. NiFeRuOx/NF displays high electrocatalytic activity and stability for overall alkaline seawater splitting: 98 mV@ 10 mA∙cm−2 in hydrogen evolution reaction, 318 mV@ 50 mA∙cm−2 in oxygen evolution reaction, and a cell voltage of 1.53 V@ 10 mA∙cm−2, as well as 20 h of durability. A solar-driven system containing such a bifunctional NiFeRuOx/NF has an almost 100% Faradaic efficiency. The NiFeRuOx coating around Ni foam is an anti-corrosion layer and also a critical factor for enhancement of bifunctional performances.

关键词: NiFeRuOx nanosheets     Ni foam     electrocatalysis     overall seawater splitting     solar-driven system    

标题 作者 时间 类型 操作

Compressive behavior and microstructure of concrete mixed with natural seawater and sea sand

期刊论文

Effects of coarse and fine aggregates on long-term mechanical properties of sea sand recycled aggregateconcrete

期刊论文

Destructive and non-destructive evaluation of concrete for optimum sand to aggregate volume ratio

期刊论文

Effect of microlimestone on properties of self-consolidating concrete with manufactured sand and mineral

Fulin Qu, Wengui Li, Xiaohui Zeng, Zhiyu Luo, Kejin Wang, Daichao Sheng

期刊论文

Effects of microfine aggregate in manufactured sand on bleeding and plastic shrinkage cracking of concrete

Branavan ARULMOLY; Chaminda KONTHESINGHA; Anura NANAYAKKARA

期刊论文

Damage-constitutive model for seawater coral concrete using different stirrup confinements subjected

期刊论文

Seismic response of precast reinforced concrete wall subjected to cyclic in-plane and constant out-of-plane

期刊论文

Numerical simulation of compaction parameters for sand-filled embankment using large thickness sand filling

Wentao WANG, Chongzhi TU, Rong LUO

期刊论文

Unified description of sand behavior

Feng ZHANG, Bin YE, Guanlin YE

期刊论文

Nonlinear sealing force of a seawater balance valve used in an 11000-meter manned submersible

期刊论文

Effect of seawater salinity on the synthesis of zeolite from coal fly ash

Yanqing YU, Xiaoliang LI, Xiaolan ZOU, Xiaobin ZHU

期刊论文

A “Seawater-in-Sludge” approach for capacitive biochar production via the alkaline and alkaline earth

Xiling Li, Tianwei Hao, Yuxin Tang, Guanghao Chen

期刊论文

Research review of the cement sand and gravel (CSG) dam

Xin CAI, Yingli WU, Xingwen GUO, Yu MING

期刊论文

An overview and recent advances in electrocatalysts for direct seawater splitting

期刊论文

strong>x nanosheets on Ni foam as an electrocatalyst for efficient overall alkaline seawater

期刊论文